Poster Presentations 10th Hershey Conference

1. Arai Y et al., Combinatorial effects of neuroinflammation and genetic background in the pathophysiology of developmental disorders.

2. Azhan A et al., Do deficits in thyroid hormone signaling contribute to delayed oligodendrocyte maturation in intrauterine growth retardation?

3. Baburamani A et al., Does direct caspase-2 interaction with BAX trigger mitochondrial permeabilisation?

4. Baburamani A et al., Mitochondrial Optic Atrophy (OPA)1 processing is altered in response to neonatal hypoxic-ischaemic brain injury.

5. Bennet L., The effect of magnesium sulphate (MgSO₄) on post-asphyxial fetal seizures

6. Brill, C et al., Oxygen impairs oligodendrogialal development via oxidative stress and HIF1a dysregulation

7. Chalak L et al., Novel Wavelet Coherence for Real Time Analysis of Dynamic Cerebral Autoregulation in HIE

8. Chavez-Valdez R et al., GABAergic Deficit and Vulnerability of Interneurons in Forebrain following Neonatal Hypoxic-Ischemic Brain Injury

10. Cui D et al., Impaired autophagosome clearance precedes sensorimotor cortical neuronal death in a neonatal swine model of hypoxia-ischemia

11. Davidson JO et al., Slow rewarming from delayed hypothermia improves EEG recovery but not cell survival after cerebral ischemia in near-term fetal sheep

12. Denihan N et al., Cord Activin-A does not predict mild or moderate hypoxic-ischaemic encephalopathy following perinatal asphyxia

13. Descloux C et al., Autophagy and cell death in a rat neonatal model of excitotoxicity

14. Diaz J et al., Therapeutic hypothermia provides variable improvements in behavior after neonatal HI: a potential role for BDNF. NINDS Diversity Outreach Trainee Award
15. Duerden E et al., Effects of early procedural pain on thalamic development in very preterm born neonates

16. Dzietko M et al., Sildenafil treatment in a neonatal rodent model of hypoxic-ischemic injury

17. Fang J et al., The Role of Mitochondrial Permeability Transition Pore Inhibition in a Neonatal Model of Hypoxic-Ischemic Brain Injury

18. Felling R et al., Active DNA demethylation following perinatal hypoxic-ischemic brain injury: A potential regulator of injury-induced plasticity.

19. Fowke T et al., Neuronal Hyaluron Production Controls Formation of Lamellipodia and Filopodia

20. Galinsky R et al., Magnesium sulfate reduces EEG activity but is not neuroprotective after asphyxia in preterm fetal sheep

21. Golubinskaya V et al., Bestrophin-3 is expressed in a subpopulation of astrocytes in neonatal hypoxic-ischemic brain injury in mice

22. Gram M et al., Substantial penetration of cell-free hemoglobin into the periventricular white matter following preterm intraventricular hemorrhage

23. Hoeber D et al., The effect of Erythropoietin on hyperoxia-induced neonatal white matter damage

24. Ingelse S et al., Impact of hypoxia-ischaemia and dopamine treatment on Dopamine D2-like receptors in preterm lamb brain

25. Kichev A et al., Implication of RANK/RANK ligand signaling pathway in the microglial activation

26. Lacabanne C et al., Maternal immune activation and later-life behavioral deficits: Is there a link with embryonic microglia migration?

27. Lai J et al., A mouse model of neonatal Staphylococcus epidermidis infection

28. Lear C et al., Dexamethasone induced hyperglycemia during asphyxia causes cystic white and grey matter injury in preterm fetal sheep

29. Leaw B et al., Immunomodulatory properties of human amnion epithelial cells rescue cell death by activating microglia in a mouse model of neonatal brain injury

30. Lemmon M et al., Diffusion tensor imaging detects cerebellar injury in neonatal hypoxic-ischemic encephalopathy
31. Ley D et al., The heme and radical scavenger α₁-microglobulin (A1M) confers protection of the immature brain following preterm intraventricular hemorrhage

32. Leyrolle Q et al., Dietary n-3 PUFAs alleviates long lasting alterations resulting from maternal immune activation in mice

33. Looney AM et al., miR-374a alterations in cellular hypoxia stimulate neuronal growth

34. McDonald C et al., Umbilical cord blood cells reduce neuroinflammation: a potential treatment for cerebral palsy

35. McDougal A et al., Erythropoietin protects against lipopolysaccharide-induced microgliosis in the fetal cerebellum

36. McNally M et al., Institutional variability in management of electrographic seizures in neonates with hypoxic ischemic encephalopathy

37. Mikhailova A et al., Developing a ferret model of newborn brain injury and cortical dysmaturation

38. Nair S et al., Metabolic and morphologic mitochondrial responses in microglia after LPS administration

39. Nilsson G et al., The role of intracellular osteopontin in preterm brain injury

40. Pathipati P et al., Effects of Erythropoietin treatment following H₂O₂ injury in glial cells on markers of necroptosis

41. Ponnusamy V et al., Finding a control microRNA from dried blood spots for babies with hypoxic-ischemic encephalopathy – An approach to Methods

42. Poretti A et al., Histogram analysis features reveal selective vulnerability of thalamic nuclei in mice after hypoxic-ischemic injury

43. Reinboth B et al., Temperature matters: Modeling hypoxic-ischemic encephalopathy and therapeutic hypothermia in neonatal mice

44. Sabir H et al., Xenon combined with therapeutic hypothermia is not neuroprotective after severe hypoxia-ischemia in neonatal rats

45. Sato Y et al., Administration of bone marrow mononuclear cells decreases hypoxic-ischemic brain injury in neonatal rats
46. Schang AL et al., Crosstalk between perinatal inflammation and oligodendrocyte differentiation involves dysregulation of cell cycle signaling pathways

47. Shah D et al., Plasma neurofilament light protein predicts cerebral injury on MRI in newborns with moderate-severe encephalopathy who have undergone therapeutic hypothermia

49. Sheldon RA et al., EPO treatment after neonatal hypoxia-ischemia in superoxide dismutase transgenic mice

50. Shi Z et al., Biosynthesis of Tetrahydrobiopterin in a Novel Chorioamnionitis Model in Rabbits

51. Sigaut S et al., Delayed melatonin therapy prevents encephalopathy of prematurity sensitizing to injury in a model of adult stroke

52. Singh-Mallah G et al., Maternal-infantile transfer following oral administration of cyclic-glycine-proline in lactating rats and its effect on improving memory in the offspring

53. Sobotka K et al., The role of mitophagy in the development of perinatal brain injury

54. Sugiyama Y et al., Therapeutic effect and safety of allogenic bone-marrow derived mesenchymal stem cells or adipose derived stromal cells in neonatal rat hypoxic-ischemic brain injury model

55. Tsuji M et al., Serial observation of cerebral hemodynamics and tissue damage in immature rats with hypoxic-ischemic insult: evaluation with 15O gas emission tomography and magnet resonance imaging

56. Nguyen V et al., Sonic hedgehog agonist treatment rescues brain volume and increases cell proliferation following neonatal stroke

57. Wagner MW et al., Texture analysis features reveal selective vulnerability of thalamic nuclei in mice after hypoxic-ischemic injury

58. Wechselberger K et al., Evaluation of the neuropeptide secretoneurin in an animal model of neonatal excitotoxic brain injury

59. Wood T et al., Cerebral Blood Flow Monitoring During Hypoxia-Ischaemia and Resuscitation in the Neonatal Rat Using Laser Speckle Imaging

60. Wood T et al., Core Temperature After Hypoxia-Ischemia Predicts Long-term Cerebral Injury
61. **Yawno T et al.**, The effects of ganaxolone in hypoxic ischaemic term lambs

62. **Zhang X et al.**, What role do immune cells play in preterm newborn brain injury?